Буняковского неравенство - определение. Что такое Буняковского неравенство
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Буняковского неравенство - определение

СВЯЗЫВАЕТ НОРМУ И СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ В ЕВКЛИДОВОМ ИЛИ ГИЛЬБЕРТОВОМ ПРОСТРАНСТВЕ, ИНАЧЕ - НЕРАВЕНСТВО ТРЕУГОЛЬНИКА ДЛЯ НОРМЫ
Неравенство Коши-Буняковского; Неравенство Буняковского; Буняковского неравенство; Неравенство Шварца; Неравенство Коши — Буняковского — Шварца
Найдено результатов: 60
Буняковского неравенство         

одно из важнейших неравенств математического анализа, утверждающее, что

установлено В. Я. Буняковским (См. Буняковский). Это неравенство аналогично элементарному алгебраическому Коши неравенству (См. Коши неравенство):

и может быть получено из последнего посредством перехода к пределу. Нередко в математической литературе Б. н. ошибочно называется неравенством Шварца - по имени Г. А. Шварца. Однако В. Я. Буняковский опубликовал свою работу о неравенствах ещё в 1859, тогда как в работах Шварца то же неравенство появляется не ранее 1884 (без ссылок на Буняковского).

Лит.: Bounjakowsky W., Sur quelques inégalités concernant les intégrates ordinaires et les intégrates aux différences finies (Lu ie 29 avril 1859), "Mémoires de l'Académie des sciences de St.-Pétersbourg. 7 série", 1859, t. 1, № 9.

Неравенство Коши — Буняковского         
Неравенство Коши́ — Буняко́вского связывает норму и скалярное произведение векторов в евклидовом или гильбертовом пространстве.
Гёльдера неравенство         
Гёльдера неравенство; Неравенство Гельдера

для конечных сумм:

для интегралов:

где р > 1 и 1/p + 1/q = 1. Г. н. установлено немецким математиком О. Л. Гёльдером (О. L. Hölder) в 1889. Принадлежит к наиболее употребительным в математическом анализе. При р = q = 2 превращается для конечных сумм в Коши неравенство, а для интегралов - в Буняковского неравенство.

Неравенство Гёльдера         
Гёльдера неравенство; Неравенство Гельдера
Нера́венство Гёльдера в функциональном анализе и смежных дисциплинах — это фундаментальное свойство пространств L^p.
Неравенство Крамера — Рао         
Неравенство Крамера-Рао; Неравенство Рао — Крамера; Неравенство Рао-Крамера
Неравенство Краме́ра — Ра́о — неравенство, которое при некоторых условиях на статистическую модель даёт нижнюю границу для дисперсии оценки неизвестного параметра, выражая её через информацию Фишера.
Неравенство Чебышёва         
  • математического ожидания]]
НЕРАВЕНСТВО В ТЕОРИИ МЕРЫ И ТЕОРИИ ВЕРОЯТНОСТЕЙ
Неравенство Чебышева (теория вероятностей); Чебышева неравенство; Неравенство Чебышёва (теория вероятностей); Неравенство Чебышева
Нера́венство Чебышёва (или неравенство Бьенеме — Чебышёва) — неравенство в теории меры и теории вероятностей.
Минковского неравенство         
Минковского неравенство

неравенство вида

где ak и bk (k = 1, 2,..., n) - неотрицательные числа и r > 1. М. н. имеет аналоги для бесконечных рядов и интегралов; оно было установлено Г. Минковским (См. Минковский) в 1896 и выражает тот факт, что в n-мерном пространстве, для которого расстояние между точками x = (x1, x2, ..., xn) и y = (y1, y2, ..., yn) имеет величину

сумма длин двух сторон треугольника больше длины третьей стороны.

Неравенство Минковского         
Минковского неравенство
Нера́венство Минко́вского — это неравенство треугольника для пространств функций с интегрируемой p-й степенью.
Коши неравенство         
СТРАНИЦА ЗНАЧЕНИЙ
Коши неравенство

неравенство для конечных сумм, имеющее вид:

.

Одно из важнейших и наиболее употребительных неравенств. Доказано О. Коши (1821). Интегральный аналог К. н. установлен русским математиком В. Я. Буняковским (см. Буняковского неравенство), интересное обобщение К. н. сделано немецким математиком О. Гёльдером (см. Гёльдера неравенство).

Чебышева неравенство         
  • математического ожидания]]
НЕРАВЕНСТВО В ТЕОРИИ МЕРЫ И ТЕОРИИ ВЕРОЯТНОСТЕЙ
Неравенство Чебышева (теория вероятностей); Чебышева неравенство; Неравенство Чебышёва (теория вероятностей); Неравенство Чебышева

1) одно из основных неравенств для монотонных последовательностей или функций. В случае конечных последовательностей

и

оно имеет вид:

а в интегральной форме ― вид:

,

где f (x) ≥ 0, g (x) ≥ 0 и обе функции либо убывают, либо возрастают. Ч. н. установлено П. Л. Чебышевым (1882).

2) Неравенство, дающее оценку вероятности того, что отклонение случайной величины от её математического ожидания превзойдёт некоторую заданную границу. Пусть ξ - какая-либо случайная величина, Eξ = a - её математическое ожидание, а Dξ = σ2 ― её дисперсия. Тогда Ч. н. утверждает, что вероятность неравенства | ξ ― a |≥ k σ не превосходит величины 1/k2. Если ξ - сумма независимых случайных величин, то при некоторых дополнительных ограничениях оценка 1/k2 может быть заменена оценкой

убывающей с ростом k значительно быстрее.

Своё название Ч. н. получило по имени П. Л. Чебышева, который с его помощью установил (1867) весьма широкие условия приложимости закона больших чисел к суммам независимых случайных величин. См. Больших чисел закон, Предельные теоремы теории вероятностей.

Википедия

Неравенство Коши — Буняковского

Неравенство Коши́ — Буняко́вского связывает норму и скалярное произведение векторов в евклидовом или гильбертовом пространстве. Это неравенство эквивалентно неравенству треугольника для нормы. Частный случай неравенства Гёльдера и неравенства Йенсена.

Неравенство Коши — Буняковского иногда, особенно в иностранной литературе, называют неравенством Шварца и неравенством Коши — Буняковского — Шварца, хотя работы Шварца на эту тему появились только спустя 25 лет после работ Буняковского. Конечномерный случай этого неравенства называется неравенством Коши и был доказан Коши в 1821 году.